常州注塑模具氮化钛功能

时间:2023年10月16日 来源:

通过多弧离子镀沉积技术制备了TiN和TiVN涂层,对比了两种涂层在不同工况下的摩擦磨损性能和切削性能,并指出影响刀具涂层服役性能的主要因素。结果表明,V元素掺杂有效提高了TiN涂层的硬度和结合力、减小了TiN涂层的摩擦因数和低温下的磨损率,但V容易氧化的特性导致500℃及以上温度TiVN涂层产生较高的磨损率。切削测试表明,在麻花钻的主切削刃和横刃区域两种涂层发生明显的剥落,而在后刀面涂层未发生明显剥落,TiVN涂层较高的膜基结合强度和耐磨性能使得它对刀具的防护效果更佳;刀具涂层的服役性能与其耐磨性能和膜基结合强度有关,刀具的主切削刃和横刃区域对涂层的耐磨性能和膜基结合强度有着苛刻的要求,且切削刃前列温度较高,对涂层的高温耐磨性能和膜基结合强度要求也高。TiN作催化剂载体,可通过提高贵金属铂利用率、增强金属-载体间相互作用、促进质量/电荷转移及增强耐腐蚀。常州注塑模具氮化钛功能

氮化钛陶瓷涂层具有的金黄色外表,涂覆于刀具之上虽拥有优化外观的好处,但主要作用却并非是为了装饰,其具有的硬度值在韦氏硬度(HV)高达2500以上,涂覆于刀具上的厚度一般为3至5微米,相较于未进行涂层加工的原产品具有更高的耐磨性和耐热性,使用寿命也更长。将这项技术应用在工业生产中的机械设备上,例如在齿轮滚刀上涂覆氮化钛其寿命可延长3至4倍,在切削齿轮时可将切削速度或进给量提高更多,从而减少材料机加工时间。工业发达国家对涂层高速刀具的使用率已占高速刀具的70%,汽车行业中几乎全部都采用涂层高速钢刀来加工齿轮,其滚削速度可达70~150m/㎜。常州纳米氮化钛检测TiN熔点为2950℃,密度为5.43-5.44g/cm3,莫氏硬度8-9,抗热冲击性好。

TiN薄膜因具有高硬度、低摩擦系数、高粘着强度、化学稳定性好、与钢铁材料的热膨胀系数相近等优点而被广泛应用于各个领域,特别是被用作高质量的切割工具,抗磨粒、磨蚀和磨损部件的表面工程材料。TiN薄膜以其制备工艺成熟稳定、价格低廉以及耐磨耐腐蚀特性好,而广泛应用于切削工具和机械零件的硬质涂层保护膜。近年来,随着科技的发展和工业的需求,TiN在MEMS、太阳能电池的背电极、燃料电池、纳米生物技术、节能镀膜玻璃等领域的应用都有相关的报道。

氮化钛是一种新型多功能陶瓷材料。在TiC-Mo-Ni系列金属陶瓷中添加一定量的氮化钛,硬质相晶粒明显细化,陶瓷的理学性能无论在室温还是高温条件下均得到大幅改善,然后金属陶瓷的高温耐腐蚀性和抗氧化性大幅提高;通过以一定比例向陶瓷中添加TiN粉末,可以提高陶瓷的强度、韧性、硬度;将纳米氮化钛添加到TiN/Al2O3复相纳米陶瓷中,通过机械混合法等各种方法均匀混合,在得到的含有纳米氮化钛粒子的陶瓷材料内部形成导电网络。这种材料可以作为电子部件应用于半导体工业。氮化钛是用于优良度的金属陶瓷工具、喷汽推进器、以及火箭等优良的结构材料。另氮化钛可作为高温润滑剂。

40、氮化钛(TiN)具有典型的NaCl型结构,属面心立方点阵,晶格常数a=0.4241nm,其中钛原子位于面心立方的角顶。TiN是非化学计量化合物,其稳定的组成范围为TiN0.37-TiN1.16,氮的含量可以在一定的范围内变化而不引起TiN结构的变化。TiN粉末一般呈黄褐色,超细TiN粉末呈黑色,而TiN晶体呈金黄色。TiN熔点为2950℃,密度为5.43-5.44g/cm3,莫氏硬度8-9,抗热冲击性好。TiN熔点比大多数过渡金属氮化物的熔点高,而密度却比大多数金属氮化物低,因此是一种很有特色的耐热材料。TiN的晶体结构与TiC的晶体结构相似,只是将其中的C原子置换成N原子。氮化钛涂层刀具由于其优异性能,很快在工业发达国家得以推广使用,并为机械加工行业带来巨大的经济效益。青岛润滑氮化钛

氮化钛涂层可降低牙科铸造合金,尤其是贱金属合金的腐蚀倾向,提高其耐蚀性。常州注塑模具氮化钛功能

42.TiN的能带结构和态密度TiN属于面心立方结构,晶格中参与成键的价电子有过渡族金属Ti的3d24s2和N的2p3。通过采用缀加平面波方法和靠前性原理计算可以得出TiN的能带结构和态密度,进而计算出材料中电子的填充态和未填充态,再根据跃迁的选择定则,计算出跃迁矩阵元和吸收系数,从而得到介电函数的虚部;再根据Kramers-Kronig变换关系就可得出介电函数的实部,据Maxwell关系式就可以确定材料的折射率和消光系数。所以分材料的能带结构和态密度对材料光学性质的影响就显得非常重要。常州注塑模具氮化钛功能

信息来源于互联网 本站不为信息真实性负责