TO220F封装的快恢复二极管MUR1640CTR
在实际应用时,用到30V时,则trr约为35ns,而用到350V时,trr》35ns,trr还随着结湿上升而增加,Tj=125℃时的trr,约为25℃时的2倍左右。同时,trr还随着流过正向峰值电流IFM的増加而增加。IRM和Qrr主要是用来计算FRED的功耗和RC电路,但他们亦随结温的升高而増大。125℃结温时的Qrr是25℃时的约、而125℃结温时的Qrr是25℃时的近3倍以上。因此,在选用FRED时必须充分虑这些参数的测试条件、以便作必要的调整。因此,trr短,IRM小和S大的FRED模块是逆变电路中的二极管,而trr短和Qrr小的FRED,使逆变电路中的开关器件和二极管的损耗减少。FRED150A~1200V的外型尺寸见图4。图4FRED的外型尺寸4.快恢复二极管模块应用随着电力电子技术向高频化、模块化方向发展,FRED作为一种高频器件也得到蓬勃发展,现已用于各种高频逆变装置和斩波调速装置内,起到高频整流、续流、吸收、隔离和箝位的作用,这对发展我国高频逆变焊机、高频开关型电镀电源、高频高效开关电源、高频快速充电电源、高频变频装置以及功率因数校正装置等将起到推动作用。这些高效、节能、节电和节材。MUR1660CTR是什么类型的管子?TO220F封装的快恢复二极管MUR1640CTR
模块化构造提高了产品的密集性、安全性和可靠性,同时也可下降设备的生产成本,缩短新产品进入市场的周期,提高企业的市场竞争力。由于电路的联线已在模块内部完成,因此,缩短了电子器件之间的连线,可实现优化布线和对称性构造的设计,使设备线路的寄生电感和电容参数下降,有利实现设备的高频化。此外,模块化构造与同容量分立器件构造相比之下,还兼具体积小、重量轻、构造连贯、外接线简便、便于维护和安装等优点,因而缩小了设备的何种,减低设备的重量和成本,且模块的主电极端子、操纵端子和辅助端子与铜底板之间具备2.5kV以上有效值的绝缘耐压,使之能与设备内各种模块一同安装在一个接地的散热器上,有利设备体积的更进一步缩小,简化设备的构造设计。常州瑞华电力电子器件有限公司根据市场需要,充分利用公司近二十年来专业生产各类电力半导体模块的工艺制造技术,设计能力,工艺和测试装置以及生产制造经验,于2006年开发出了能满足VVVF变频器、高频逆变焊机、大功率开关电源、不停电电源、高频感应加热电源和伺服电机传动放大器所需的“三相整流二极管整流桥开关模块”(其型号为MDST)的基本上,近期又开发出了“三相超快恢复分公司极管整流桥开关模块”。快恢复二极管MURB3040CTMUR1640CT二极管的主要参数。
这种铜底板尚存在一定弧度的焊成品,当模块压装在散热器上时,能保证它们之间的充分接触,有利于热传导,从而使模块的接触热阻降低,有利于模块的出力和可靠性。(3)由于FRED模块工作于高频(20kHZ以上),因此,必须在结构设计要充分考虑消除寄生电感等问题,为此,在电磁等原理基础上,充分考虑三个主电极形状、布局和走向,同时对键合铝丝长短和走向也作了合适安排。以减少模块内部的分布电感,确保二单元的分布电感一致,从而解决模块的噪音和发热问题,提高装置效率。3.主要技术参数图3是FRED模块导通和关断期间的电流和电压波形图,它显示了FRED器件从正向导通到反向恢复的全过程。其主要关断特性参数为:反向恢复时间trr=ta+tb(ta为少数载流子存储时间,tb为少数载流子复合时间);软度因子S=(表示器件反向恢复曲线的软度);反向恢复峰值电流:;反向恢复电荷。而导通参数为:反向重复峰值电压URRM.;正向平均电流IF(AV);正向峰值电压UFM;正向均方根电流IF(RMS)和正向浪涌电流IFSM等。图2(a)预弯后的铜底板(b)铜底板与DBC基板焊接后的合格品图3FRED导通和关断期间的电流和电压波形图这里需要注意的是:trr随所加反向电压UR的增加而增加,例如600V的FRED。
我们都知道快恢复二极管有个反向击穿的极限电压,绝大多数的快恢复二极管厂商都没把它写入数据手册,但在大多数情况下为了节省成本不可能将快恢复二极管反向耐压降额到50%左右使用,那么反向电压裕量是否足够,这对评估该快恢复二极管反向耐压应降多少额使用较为安全是有一定意义的。从下表中可看出,反向电压的裕量并不像网上所说的那样是额定反压的2~3倍。膝点反向电压为漏电流突变时的反向电压点。(快恢复二极管在常温某电压点下,其漏电流突然一下增大了几十上百倍,例如:某快恢复二极管在78V时漏电流为20μA,但在79V时漏电流为2mA,79V即为膝点反向电压)膝点反向电压虽然未使快恢复二极管完全击穿,但却严重影响了快恢复二极管的正常使用。而在高温下漏电流更易突变,此时的膝点反向电压就更低。所以一个快恢复二极管的反向电压应降额值为多少才较为正确合理,更应该从物料的使用环境温度和实际使用的导通电流来测试膝点反向电压值,然后再来确定裕量降额值。好的电路设计在对快恢复二极管参数的选择时,不仅要考虑常温的参数,也要考虑在高低温环境下的一些突变参数。知道快恢复二极管的这些特性关系往往会给工程师的选管以及电路故障的分析带来事半功倍的效果。 MURB1060是那种类型的二极管?
选择快恢复二极管时,主要看它的正向导通压降、反向耐压、反向漏电流等。但我们却很少知道其在不同电流、不同反向电压、不同环境温度下的关系是怎样的,在电路设计中知道这些关系对选择合适的快恢复二极管显得极为重要,尤其是在功率电路中。在快恢复二极管两端加反向电压时,其内部电场区域变宽,有较少的漂移电流通过PN结,形成我们所说的漏电流。漏电流也是评估快恢复二极管性能的重要参数,快恢复二极管漏电流过大不仅使其自身温升高,对于功率电路来说也会影响其效率,不同反向电压下的漏电流是不同的,关系如图4所示:反向电压愈大,漏电流越大,在常温下肖特基管的漏电流可忽略。其实对快恢复二极管漏电流影响的还是环境温度,下图5是在额定反压下测试的关系曲线,从中可以看出:温度越高,漏电流越大。在75℃后成直线上升,该点的漏电流是导致快恢复二极管外壳在额定电流下达到125℃的两大因素之一,只有通过降额反向电压和正向导通电流才能降低快恢复二极管的工作温度。 MURF3020CT是什么类型的管子?上海快恢复二极管MUR1660
MUR3060PD是什么类型的管子?TO220F封装的快恢复二极管MUR1640CTR
在开机的瞬间,滤波电容的电压尚未建立,由于要对大电容充电.通过PFC电感的电流相对比较大。如果在电源开关接通的瞬间是在正弦波的最大值时,对电容充电的过程中PFC电感L有可能会出现磁饱和的情况,此时PFC电路工作就麻烦了,在磁饱和的情况,流过PFC开关管的电流就会失去限制,烧坏开关管。为防止悲剧发生,一种方法是对PFC电路工作的工作时序加以控制,即当对大电容的充电完成以后,再启动PFC电路:另一种比较简单的办法就是在PFC线圈到升压二极管上并联一只二极管旁路。启动的瞬间,给大电容的充电提供另一个支路,防止大电流流过PFC线圈造成饱和,过流损坏开关管,保护开关管,同时该保护二极管也分流了升压二极管上的电流,保护了升压二极管。另外,保护二极管的加入使得对大电容充电过程加快.其上的电压及时建立,也能使PFC电路的电压反馈环路及时工作,减小开机时PFC开关管的导通时间.使PFC电路尽快正常工作。‘所以,综上所述,以上电路中保护二极管的作用是在开机瞬间或负载短路、PFC输出电压低于输入电压的非正常状况下给电容提供充电路径,防止PFC电感磁饱和对PFCMOS管造成的危险,同时也减轻了PFC电感和升压二极管的负担,起到保护作用。在开机正常工作以后。 TO220F封装的快恢复二极管MUR1640CTR
上一篇: 江西肖特基二极管MBR60100PT
下一篇: 福建肖特基二极管MBRF2060CT